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COMPUTING RATIONAL POINTS 
ON RANK 1 ELLIPTIC CURVES 

VIA L-SERIES AND CANONICAL HEIGHTS 

JOSEPH H. SILVERMAN 

ABSTRACT. Let E/Q be an elliptic curve of rank 1. We describe an algorithm 
which uses the value of L'(E, 1) and the theory of canonical heghts to effi- 
ciently search for points in E(Q) and E(Zs). For rank 1 elliptic curves E/Q 
of moderately large conductor (say on the order of 107 to 1010) and with a 
generator having moderately large canonical height (say between 13 and 50), 
our algorithm is the first practical general purpose method for determining if 
the set E(Zs) contains non-torsion points. 

INTRODUCTION 

Let E/Q be an elliptic curve given in minimal Weierstrass form by an equation 

(1) E:y 2 + alxy + a3y = x3 + a2x2 + a4X+ a6, 

and let b2, b4, b6, b8, C4, C6, /\,j be the usual associated quantities [15, III ?1]. The 
Mordell-Weil group E(Q) is finitely generated and the set of S-integral points E(Zs) 
is finite, and there is a vast literature devoted to the determination of generators 
for E(Q) and elements of E(2s). In this paper we will concentrate on the case 
that E(Q) has rank 1, and we will describe a new algorithm which can be used 
either to search for a generator of E(Q) or to determine if E(Zs) contains non- 
torsion points. 

There are 5 general methods known for searching for points in E(Q): 

(1) Brute Force Search Algorithm. In this method one loops over d = 1,2, ... 
and a = 0, ?1, ?2, .. . and checks if a/d2 is the x-coordinate of a point in E(Q). 
If E(Q) contains a rational point with (logarithmic) height log D, then the running 
time is O(D3/2). 

(2) Sieve Assisted Search Algorithm. For each d, one uses congruence condi- 
tions to eliminate many of the potential a values. The running time is still O(D3/2), 
but as a practical matter the run time may be reduced by a factor of 1000 or more. 
See [6, ?3.5] for the basic idea, although the method there has been substantially 
improved by Cremona [7]. 
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(3) Homogeneous Space Search Algorithm. In this method one looks for 
homogeneous spaces Cl,... , Ct and covering maps Oi: Ci -- E of degree m so 
that E(Q) is equal to the union of the i (Ci(Q))'s. The gain in the method lies in 
the fact that the height of the smallest point in Ci(Q) will tend to be approximately 
the mth root of the height of the smallest point in E(Q), potentially a huge savings 
even for m = 2, 3, or 4. The problem with using descent comes from the difficulty 
in finding the curves Ci. If E(Q) contains a point of order 2 (or 3), it is easy to 
find these curves for degree 2, and feasible for degrees 4 and 8. See for example [3] 
and [4] for some spectacular computations on the curves y2 = X3 + px. However, 
if E(Q) has no torsion, then descent will only succeed if the relevant homogeneous 
spaces happen to be defined by equations with comparatively small coefficients. For 
degree 4 descents, as described in [6], the expected search time is O(D1/2) after the 
homogeneous space has been found. 

(4) Heegner Point Algorithm. This method is only applicable in case E(Q) 
has rank 1. Briefly, one picks out certain special points on XO(N), where N is 
the conductor of E, and uses the modular parametrization Xo(N) -- E to obtain 
points in E(Q). (See [10] for basic information about Heegner points.) The Heegner 
point method is completely effective in principle, but in practice the series defining 
the modular parametrization converges slowly if the conductor of E is large. More 
precisely, the Heegner point method requires computation of a series with O(N) 
terms, so it is quite practical if N is on the order of 105, but seems quite impractical 
in general if N is greater than 108. However, we should mention that if E is a (large) 
twist of a small conductor curve E', then Elkies [9] and Zagier [21] explained how to 
compute Heegner points quite efficiently. For example, Elkies finds a non-torsion 
generator on 1063y2 = X- x having h(x) 120, and Liverance used Zagier's 
method to find a Heegner point on x3 + y3 = 1354 having height h(x) > 3000. 

(5) Canonical Height Search Algorithm. This is the new algorithm which we 
will describe in detail in this paper. The algorithm can be used as a straight search 
algorithm, in which case it has a projected run time of O(D + N), or it can be 
used to determine if the set E(Zs) contains non-torsion points, in which case the 
run time is essentially 

? (N + N? logp D). 
pCS 

In particular, it takes 0( N) steps to determine if E(z) contains non-torsion 
points, a running time which is independent of the actual size D of the generator 
of E(Q) and is much faster than any other known method. 

The validity of the Canonical Height Search Algorthm depends on two assump- 
tions, namely that E is modular and that L'(E, 1) is equal to the Birch-Swinnerton- 
Dyer value up to multiplication by the square of an integer. By the work of 
Wiles [20], Taylor-Wiles [18], and Diamond [8], we know that most E/Q are modu- 
lar; and assuming the modularity, the work of Gross-Zagier [10] and Kolyvagin [11] 
gives the desired value of L'(E, 1). We will implictly be using these results when 
we apply the Canonical Height Search Algorthm to prove that E(Zs) contains no 
non-torsion points without actually finding a generator for E(Q). Of course, if the 
Canonical Height Search Algorthm produces a candidate rational point P in E(Q), 
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we can verify that P is in E(Q) directly without using any conjectures or deep the- 
orems. Finally, we mention that the Canonical Height Search Algorthm is practical 
in the sense that the "big-O" constants are reasonably small. 

The basic idea underlying the Canonical Height Search Algorthm is simple to 
explain. First we compute the number H = L'(E, 1)T2/2Qc, which should equal 
the canonical height h(P) of a rational point P E E(Q). Here T, c, and Q are the 
usual quantities appearing in the Birch-Swinnerton-Dyer coefficient. The canonical 
height has a decomposition 

h(P) = A (P) + log d(P) + Abad (P) I 

where x(P) = a(P)/d(P)2, Abad(P) is the contribution from the primes of bad 
reduction, and A, (P) is the archimedean local height. It turns out that for any 
given E, the number Abad(P) lies in a short list of values, say Abad(P) E Abad- 

Further, the archimedean local height is a (real) analytic function AOO (C/L + 
R U {oo}, where the lattice L is chosen so that E(C) - C/L. So the algorithm 
proceeds as follows. For each hypothetical denominator d and each possible bad 
contribution A E Abad, we set AOO (z) = h(P) - log d - A and "solve" for z. Of course, 
for any r E R, the inverse image A` (r) consists of a curve in C/L. However, we 
have the additional information that E(Q) c E(R), and E(R) itself consists of one 
or two circles in E(C). So the (real) curve A~1(r) will intersect E(R) in only a few 
points, and these can be found explicitly. This gives a few points (x,Iy) E E(R), 
and we then check whether d2x and d3y are close to being integers. If they are, say 
d2x a and d3y b, then we check whether (a/d2, b/d3) is indeed a rational point 
on E. If so, we are done, and if not, then we go back and check another Abad(P) or 
another d. This concludes our brief description of how the Canonical Height Search 
Algorithm is used to find a generator for E(Q). 

In order to prove that (say) E(z) contains no non-torsion points, it suffices to 
use the Canonical Height Search Algorithm with d = 1. If no point is found, then 
we know that the point P E E(Q) with h(P) = H is not an integral point. Of 
course, this does not prove that E(z) consists only of torsion points, since P might 
be a multiple of a Q E E(z), say P = MQ. So we proceed as follows. For each 
m = 1,2,..., we apply the Canonical Height Search Algorithm with d + 1 to the 
height value H/m2. If P = MQ with Q E E(z), then the algorithm will eventually 
find Q. Otherwise, after checking all m's up to, say, mo, we perform a brute force 
(or sieve-assisted) search on E for all integer points having canonical height less 
than H/m2n. Even if H is very large, say between 100 and 1000, taking mo 10H 
will lead to a very small search provided the coefficients of the curve E are not too 
huge. A similar method can be used to verifty that E(Zs) consists entirely of 
torsion points, provided the set S of primes is not too large. 

Karl Rubin [13] has described a method to construct a point Pp E E(Q) 0 Zp 
in the case that E has complex multiplication and ord,=i L(E/Q, s) = 1. This 
point is not in E(Q), but using p-adic L-series, he is able to show how to p-adically 
approximate a point Q E E(Q). He gives an example using y2 = X3- 49x and 
constructs the point (-49/25, -1176/125) by approximating it modulo the ideal 
(2+i)8Z[i]. It is not clear whether Rubin's method would be practical for computing 
points with large (archimedean) height of the sort considered in this paper. 
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Doug Ulmer [19] has given a construction in the same spirit as Rubin for the 
universal elliptic curve defined over a modular function field. He explicitly con- 
structs points defined over a certain completion of the field and gives a conjectural 
description of how one might use these to construct rational points. He does not 
give any explicit examples, and again it is not clear to what extent his method is 
practical. 

[In fairness to both Rubin and Ulmer, it should be noted that the main aim 
of their papers is to construct points which can be used for various theoretical 
purposes. Both papers contain extremely interesting results.] 

The organization of this paper is as follows. In Section 1 we give a step-by- 
step description of the Canonical Height Search Algorthm, starting with a straight 
search version and following with a version to determine if E(7s) contains non- 
torsion points. This serves as an overview and is essentially a guide for implemen- 
tation. In Section 2 we go over each step of the algorithm in more detail, providing 
justification, further implzmentation suggestions, and references. One of the steps 
of the algorithm requires computation of certain power series in q, where lql < 1. 
In general, Iql will be fairly small and this step will cause no problems. However, 
if it happens that Ij(E)I >? 1 and c6(E) < 0, then lql may be close to 1 and the 
computation will not be feasible. In Section 3 we describe a modification of this 
step which allows q to be repaced with a small q', albeit at the cost of introducing 
various additional complications. Section 4 contains two estimates needed by the 
algorithm, followed by a number of remarks, including a suggestion on how the 
Canonical Height Search Algorithm might be modified to help with certain curves 
of rank 2, and a brief description on how one can combine the Canonical Height 
and the Homogeneous Space Algorithms to produce, in principle, an algorithm with 
O(D1/4) search time. Finally, in Section 5, we give numerical examples illustrating 
the Canonical Height Search Algorithm. 

Acknowledgements. I would like to thank Horst Zimmer, whose questions in To- 
ronto led me to reconsider the problem of efficiently computing rational points, 
John Cremona for sending me lists of test cases and for much helpful algorithmic 
advice, Noam Elkies, Hendrik Lenstra, Richard Pinch, and Nigel Smart for their 
helpful suggestions, and Don Zagier for explaining that the Heegner Point Method 
is far more practical than I had thought and suggesting that the real utility of the 
Canonical Height Method would be for dealing with points of small denominator. 
I would also like to thank John Tate for asking me, many years ago, if it might 
be possible to recover a rational point from its canonical height. This paper is a 
belated partial answer to his question. 

1. STEP-BY-STEP DESCRIPTION OF THE ALGORITHM 

In this section we give a detailed step-by-step description of the Canonical Height 
Search Algorithm. The first version we present will (eventually) find a non-torsion 
point in E(Q) when rankE(Q) = 1. The second version can be used to determine 
if E(Zs) contains non-torsion points, again when rankE(Q) = 1. In particular, 
the second version provides a method for proving that E(Zs) consists entirely of 
torsioln points (or is empty) in many situations where there are currently no other 
practical algorithms. 

This section will merely state the main steps in the algorithms. In the next 
section we will discuss each of these steps, giving some theoretical justification, 
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references, and implementation suggestions. We assume throughout that E is given 
by a minimal Weierstrass equation (1). 

We begin with the algorithm to compute a non-torsion point in E(Q). 

The Canonical Height Search Algorithm Version I 
Computing a Point in E(Q) When rank E(Q) = 1. 

(1) Compute the quantities b2, b4, b6, b8, C4, c6, /, j attached to the Weierstrass 
equation (1) 

(2) Compute 
N= Conductor of E, 

E = Sign of Functional Equation of E. 

If E 1, terminate with message "Analytic rank is even." 
(3) Compute 

(E, 1) 2 E n El ( ), where El(x) je dt 

and the an's are the L-series coefficients for E/Q, L(E/Q, s) = E ann-s. If 
L'(E, 1) 0, terminate with the message "Analytic rank > 3." 

(4) Compute the real period Q = fE(R) dx/(2y + aix + a3), the order of the 
torsion subgroup T = E(Q)tors, and the Tamagawa number c = HPI,A Cp, 

where cp = [E (Qp): Eo(Qp )]. 
(5) Compute the value H = L'(E, 1)T2/2Qc. This will be the canonical height 

of a Heegner point P in E(Q). 
(6) Make a list Abad of the possible contributions to the canonical height coming 

from primes of bad reduction. In practice, Abad tends to be fairly short. 
(7) Compute a real period w1 and a complex period W2 for E, and let T = W21 

and q = exp(27riT). These should be chosen so that q (E R, lql < 1, and 

C4 (- ) ( + 240 E ) and C6 = I -504 

(If c6 < 0, then lql may be close to 1, which will seriously impair the efficiency 
of the algorithm. We will discuss below a modification using twists to deal 
with this situation.) 

(8) Define a modified Weierstrass p-function 

p(Z) 2 (2 ) (1 

? 
Eq (2 ((( nqnu)2 + (q U)Z) U)(2 q7n)2))' 

where u = exp(27riz). 
(9) LOOP 1 < d < dmax 

(10) LOOP A E Abad 
(11) Solve 

S qnJ ((1 _ q)2 + q nS2) qql-1/12 exp(A + log d - H) 
n>l 

for S with 0 < S < 2. 
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(12) Compute 

1 .-1 S 
z= -sI sin 2 

a = closest integer to d2p(z). 

(13) IF 4a3 + b2a2d2 + 2b4ad4 + b6d6 is a perfect square, say equal to b2, THEN 
terminate with the rational point (a/d2, (b - alad - a3d3)/2d3) on E. 

(14) IF /\ > 0 (E(R) Has Two Components) 
(15) Set Q = q (note /\ > 0 implies that q > 0). Solve 

17 ((1 -Q2n-1)2 + Q2n-1S2) = Q1/12 exp(A+ - logd-H) 
n>1 

for S with 0 < S < 2. 
(16) Compute 

z= - sin- + -71 

a = closest integer to d2p(z). 

(17) IF 4a3 + b2a2d2 + 2b4ad4 + b6d6 is a perfect square, say equal to b2, THEN 
terminate with the rational point (a/d2, (b - alad - a3d3)/2d3) on E. 

(18) ENDIF (E(R) Has Two Components) 
(19) END Abad LOOP 
(20) END d LOOP 
(21) Terminate with message "No rational point found." 

We now describe the modifications needed to search for non-torsion points in 
E(Zs) for a finite set of primes S. In particular, if S = 0, then the algorithm will 
determine if E(z) contains non-torsion points. We mention that the validity of the 
output of this algorithm is dependent on knowing that the elliptic curve E/Q is 
modular. For example, this condition will be satisfied if E/Q has good or multi- 
plicative reduction at 3 and 5 (see [20], [18], [8]). 

The Canonical Height Search Algorithm Version II 
Searching For Non-torsion Points in E(Zs) When rankE(Q) = 1., 

(a) Do Steps (1)-(8) of the previous algorithm. In particular, H is the canonical 
height of a non-torsion point in E(Q). Save this original value of H as Ho. 

(b) LOOP 1 < m < ?[ H0] 
(c) Set H = Ho/m2. 
(d) Compute dmax according to the formula 

log(dmax) = H+ h(j) + logJA I+ -log+ IJI + 2log+ Jb2/121 + 1.32. 
24 12 12 2 

(e) LOOP 1 < d < dmax WITH d E Z n Z*. (That is, d is composed of a product 
of primes in S.) 

(f) Do Steps (10)-(19) of the previous algorithm. In particular, if E(Q) has a 
point with x-denominator d2 and canonical height H, then the algorithm will 
find this point and terminate. 

(g) END d LOOP 
(h) END m LOOP 
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(i) Compute dmax according to the following formula (notice the H has disap- 
peared, so this value will generally be fairly small): 

log(dmax) = h(j) + - log JAI+ log+ ?i + ? log+ Jb2/121 + 1.42. 24 12 1 

(j) Search for non-torsion points in E(Q) with x-coordinate a/d2 satisfying lal < 
d ax and 1 < d < dmax If dmax isn't too large, this can be done with a 
brute-force search; otherwise it may be preferable to use a sieve search. If a 
non-torsion point is discovered, then return the point and terminate. 

(k) Terminate with the message "E(Zs) contains no non-torsion points." 

Remark 1.1. It is possibly worth mentioning that for any fixed bound do, the 
Canonical Height Search Algorithm II can also be used to rapidly find all points 
in E(Q) of the form (a/d2, b/d3) with 1 < d < do. One need merely replace Step (e) 
with a loop over 1 < d < do. 

2. DISCUSSION OF THE ALGORITHM 

In this section we will discuss in more detail each of the main steps described in 
Section 1. This will include some theoretical justification, implementation remarks, 
and references. For the convenience of the reader, we will also give the appropriate 
functions in PARI [1] for computing various quantities. 

Step 1. The formulas to compute b2,b4,b6,b8,c4,c6,/\,j are given in [5, ?7.1.3], 
[6, ?3.1], [15, III ?1]. [PARI: b2, b4, b6, b8, C4, c6, /\, j are the 6th through 13th com- 
ponents of e = initell([a1,a2,a3,a4,a6]).] 

Step 2. The conductor N of E may be computed using Tate's algorithm and Ogg's 
formula, or via the L-series of E. The sign e of the functional equation is most easily 
computed using the L-series. For Tate's algorithm, see [5, ? 7.5.1], [6, ?3.2], or [16, 
IV ?9]. For the L-series method, see [5, ?7.5.3]. [PARI: N = globalred(e) [1].] 

Step 3. Methods to compute the an coefficients of the L-series 

L(E/Q, s) = E ann-S 

are given in [5, ??7.4.3, 7.5.3] and [6, ?2.9]. The exponential integral EI(x) 
Ax dt/tet can be efficiently computed as described in [5, ?5.6.2] and 16, ?2.13]. 
Note that although it may be necessary to take a large number of terms in the 
series for L'(E, 1) in order to get (say) 50 or 100 digits of accuracy, this calculation 
only needs to be done once. We will give an explicit error estimate below-see 
Proposition 4.1. [PARI: anell(e,no) gives a vector with the first no of the an's, 
while akell (e ,n) gives just an. The exponential integral is eintl (x).] 

Step 4. The real period Q can be computed using the AGM method [5, ?7.4.1, 
Algorithm 7.4.7], [6, ?3.7]. The torsion subgroup, or more precisely its order T, can 
be computed using the method described in [5, ?7.5.2, Algorithm 7.5.5] and [6, ?3.3]. 
The local Tamagawa numbers cp whose product is c are computed as a by-product 
of Tate's algorithm [5, ? 7.5.1], [6, ?3.2], [16, IV ?9]. [PARI: The real period Q 
equals e [15] if /\ < 0, and Q equals 2e [15] if /\ > 0. The torsion subgroup has 
order T = torsell(e) [1]. The Tamagawa number is c = globalred(e) [3].] 

Step 5. Set H = L'(E, 1)T2/2Qc, using the values computed in Steps 3 and 4. 
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Non-archimedean Local Heights (nr= ordp(,AE)) 

[Reduction Type I Ap,bad/ log(p) 

In ~~(n,/12) - (i/2) ? (i2 /2n~) for some 0 < i < n,/2 
n,/12 or m/12 +{(n - m -6)/12} 

or -m/24 +{I(n - m- 6)/12} 
II nj12 

III n,/12 or { (n~ - 3)/12} 
IV n~/12 or {(n. - 4)/12} 

IV* n~/12 or { (n. - 8)/12} 

III* n~/12 or {(n. - 9)/12} 
II* n~/12 

Step 6. We need to make a list of all possible contributions to the canonical height 
coming from primes of bad reduction. (More precisely, we want the possible con- 
tributions other than those coming from primes dividing the denominator of the 
x-coordinate, since primes dividing the denominator of x will be accounted for in 
our choice of d.) For example, if plA and if P does not reduce to the singular 
point modulo p, then the local height Ap(P) has a ' 

ordp(A) logp attached to 
it [16, V1.4.1]. If P does reduce to the singular point modulo p, then there is a 
small list of possibilities for V~P) depending on the particular reduction type and 
the particular componenent of the Ne'ron model hit by P. The reduction type for 
each plA can be computed using Tate's algorithm [5, ? 7.5.1], [6, p3.2], [16, IV p9]. 
(A small amount of time can be saved by observing that if p2 { A, then the p- 
contribution is always 1 log p.) Then the possible p-contributions to Abad (F) can 
be read off of Table 1, which appeared originally in [14]. (Remark. If p > 5, then 
the quantities in braces in Table 1 are equal to 0.) Take each of the possibilities for 
each p dividing A and add them up to create the list Abad of possible contributions 
to h(P) coming from primes of bad reduction. 

[PARI: The command f actor (abs (e [ 121 )) [, 11 gives a list of primes of bad 
reduction. For each prime p of bad reduction, the reduction type can be computed 
using t=localred(e,p) [21, where the values 

t =1, 2, 3, 4, -1, -2, -3, -4, 4?+N, -4 -N 

correspond respectively the the reduction types 

'0,i Ili IlII IV, I*, II*, JJII* iIV*, IN,i I7* 

Step 7. The periods w1 and w2 can be computed using AGM's as described in [5, 
p7.4.1, Algorithm 7.4.7] or [6, p3.7]. The resulting Tr w2/w1 has real part equal 
to either 0 or -1/2. That these values are correct can be checked by comparing 
the series listed in Step 7 with the values Of c4 and C6. We observe that there 
are two special cases. First, if c6= 0, then TF i (respectively TF (1 ? i)/2) if 
c4 < 0 (respectively C4 > 0). Second, if c4 =0, then TF (1 ? i ,3)/2 (respectively 
T =1/2 ? i/2 ,3) if c6 > 0 (respectively C6 < 0).- 

If c6 ?0, then Jql will be quite small. Precisely, if c6 > 0 and A > 0, then 0 < q < 
-27,vi3 e r_ 0.001867, while if c6 > 0 and A < 0, then 0 > q > - r_ -0.004333. 
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Thus if c6 > 0, all q-series converge rapidly and one can perform multi-precision 
computations easily. 

However, if c6 < 0 and IjI >? 1, then the corresponding q value will be quite close 
to ?1, which will slow the algorithm considerably. A possible cure for this problem 
is to move to the C/JR twist of the elliptic curve. This has the effect of replacing 
c6 by-c6, yielding a better q value. But is also has the effect of switching the real 
and (purely) imaginary loci, so various modifications need to be made, especially 
in Steps 11 and 15, as will be described in Section 3. In practice, it is probably not 
worth moving to the twist if lql < 1/2. 

[PARI: The periods w1 and w2 are e[15] and e[16].] 

Step 8. Our modified Weierstrass function P is related to the usual p (as defined 
in [5, Proposition 7.4.4], for example) by the formula 

P(z q) - 2 + P(w1Z; w12w + 22) 

For high speed implementation, it might be better to compute the Weierstrass 
p function in terms of the Weierstrass u- function, since the u- function converges 
quadratically. (See [5, Remark after Algorithm 7.4.5].) [PARI: This is essentially 
the function pointell. See Step (12) below.] 

Step 9. Choose a value for dmax. The algorithm will search for a point in E(Q) 
whose x-coordinate has the form a/d2 for some integer 1 < d < dmax. 

Step 10. Loop over the (hopefully small number of) elements in the set Abad 

Step 11. There are two issues to discuss at this step. First, how should one solve 
efficiently for S? Second, why is one solving for S? The first is easily dealt with. 
Let f(S) be the function 

f(S) = S fl ((1I q7)2+ qnS2) 
n>1 

Taking the logarithmic derivative, we find that 

f'(S) f(S) It (1- q+)2 + qnS2 } 

qn 
=( (1-~727qn)2 + qs2)) (1 + 2S2 (1_ qn)2 + qnS2) 

n2>1 72>1 

This formula for f'(S) is rapidly converging (provided lql is small, of course), so we 
can solve an equation f(S) = c efficiently using Newton's method. A good starting 
point is S = c/(1 - q)2, and then iterate S (- S - (f(S) - c)/f'(S). (We also note 
that f'(S) > 0 for all real S > 0, so there will be only one solution.) 

Next we explain why the function f(S) appears. What we are doing is searching 
for a point P whose canonical height has the known value h(P) = H. This canonical 
height can be decomposed as 

h(P) = A4j(P) + log d(P) + Abad(P). 
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At this step we are assuming that the denominator d(P) of the x-coordinate of P 
is equal to our loop variable d, and that the contribution Abad(P) coming from the 
bad primes is equal to the value A chosen from Abad. So we are assuming that 

H =- OO(P) +Vlogd +V, 

where the only unknown quantity in this equa,tion is AO (P). 
Next we consider the explicit formula for the archimedean local height as a (real) 

analytic function A: C/L -> R U {oo}. Here L = Z T7/Z is a lattice attached to E 
from Step 7, and we have fixed an isomorphism C/L E(C) defined over R. For 
any z E C, we write u = e2riz, and we let B2(t) = t2 t + 1 be the 2nd Bernoulli 6 
polynomial. Then A,, is given by the formula 

2z (l ogul log I q -log 1 -ul -sE log (l -q qu)( - q -) 
A() 2 kloglql n>1 

(This formula is due to Neron and Tate. See [16, VI.3.4].) 
We are searching for points in E(Q), so in particular for points in E(R). The 

real locus of C/L consists of either one or two circles. More precisely, in all cases 
it contains the circle IR/Z; and if A > 0 (equivalently q > 0, T E iR), then it also 
contains the circle (IR/Z) + T/2. For this step, we will concentrate on the set IR/Z, 
which corresponds to the identity component of E(R). Notice if z E R/Z, then 
u = e27iZ has absolute value 1. We compute 

1u- u u1/2(u-1/2 _ U1/2- 

--2iu1/2 sin(7rz), 

(1-qnU)( -qnUu1) qn(1 - q)2 - qn(ul/2 _ U-1/2)2 
- (1 - qn)2 + 4qn sin2 (7rz). 

So if we write S = 2 sin(7rz), then for points in z E IR/Z, the archimedean local 
height is given by (remember Jul = 1) 

A >(z) --log lql -log |S| - E log(l ( qn)2qS + 12 
n>1 

In terms of the function f(S) defined above, this can be rewritten as 

f (S) =ql -1/12 exp (0o (z)) 

We are looking for a point with Ac (z) = H -log d - A, so we want to solve the 
equation 

f(S) = ql -1/12 exp(-H + log d + A) 

for S. This is exactly the task specified in Step 11. 

Step 12. In Step 11 we found a value of S so that S = 2sin(7rz), where z E IR/Z 
corresponds to the desired point of IR/Z ' E(IR). In this step we use the known value 
of S to compute z = (1/7r) sin-1(S/2). Then we use an explicit isomorphism C/L - 
E(C) to compute the corresponding point on E. More precisely, the modified 
Weierstrass function in Step 8 gives the x-coordinate on E, so the number P(z) 
gives the x-coordinate of a candidate rational point. This rational point should have 
x-denominator d, so we compute the closest integer a to the real number d2p(z). 
[PARI: The point on E corresponding to z is equal to pointell (e, e [151 *z).] 
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Step 13. Having found a candidate a/d2 for the x-coordinate of a rational point 
on E, we plug this into the equation for E and check if it actually leads to a 
rational point. An alternative procedure is to use a modified Weierstrass derivative 
series P' so that (P, P'): C/L -> E(C). Then one could let b be the integer closest 
to d3P'(z) and check if (a/d2, b/d3) is in E (Q). This avoids checking if a large 
number is a perfect square, at the cost of e-ialuating another power series. Also, 
unfortunately, since b will tend to be much larger than a, this alternative method 
requires greater precision in the floating point calculations. 

Step 14. If A > 0 (equivalently, T E iIR or q > 0), then E(R) has two components, 
and we need to check for a rational point of the known height on the non-identity 
component. (If there is a rational torsion point T on the non-identity component, 
then Steps 14-18 can be skipped. See Remark 4.1 in Section 4 for a discussion.) 

Step 15. The justification for this step is much the same as in Step 11, but now 
we're looking for a point z - ( + 1F, where (E IR and T E ilR. Let 4 = e2"i and 
Q -q/2 = e"T. Notice that u = e2,iz = Q(. We compute 

(1 -u) 17 (1 - qu)(I - qu-1) = (1 - QC) 11(1 - Q2n+l()(1 - Q2n-101) 
n>1 n>1 

- J7(I -_ Q2n1 2n-1-1 

n>1 

- 17 ((1 _ Q2n-1)2 _ Q2n-l((1/2 _ C-1/2)2) 
n>1 

- 11 ((I _ Q2n 1)2 + 4Q2n-1 sin2 (7r()). 
n>1 

Further, B2 (log u /log q) B2(1/2) = 1/12, so the formula for the archimedean 
local height is 

Ao(z) =--log lql +log f (S), 
24 

where now 

f (S) = ((1 _ Q2n-1)2 + Q2n-1S2) and S = 2sin(7r(). 
n>1 

So we need to solve 

f (S) = q1/24 exp(-A_ (P)) - Q1/12 exp(-H + log d + A) 

for S. The derivative 

f '(S) = 25f (S) (1 Q2n-1 
n(>1 Q2n-1)2 + Q2n-lS2 

is rapidly convergent, so again we can use Newton iteration to solve f (S) = c. 
Further, f'(S) > 0 for S > 0, so there is only one solution. 

Step 16. Using the value of S from Step 15, we compute the point 

z = (1/ir) sin-1(S/2) + Tf/2 E C/L, 

use the modified Weierstrass function to get a possible rational x-coordinate P(z), 
and multiply by the denominator and take the closest integer a to d2p(z) to get 
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the numerator of the hypothetical rational point. [PARI: As in Step (12), compute 
pointell (e, e [151 *z).] 

Step 17. In this step we check if the rational number a/d2 obtained in Step 16 
gives a rational point on E. The remarks made in Step 13 apply also to this step. 
[PARI: ordell (a/d2) will return the y-coordinates of any points P in E(Q) with 
x(P) = a/d2, and will return [E if there are no such points.] 

Step 18. This is the end of the section dealing with the case that E(R) has two 
components. 

Step 19. This is the end of the loop over A's in Abad. 

Step 20. This is the end of the loop over possible denominators d. 

Step 21. If this step is reached, then the sought after point has denominator greater 
than dmax. 

This completes our detailed description of the steps in the Canonical Height 
Search Algorithm used as a straight search method. We next describe the modifi- 
cation used to determine if the (possibly empty) set E(Zs) contains any non-torsion 
points. 

Step a. See the justification for Steps (1)-(8) above. 

Step b. We will search for points whose canonical height is Ho/rm2 until this height 
is smaller than 0.1. 

Step c. Compute the canonical height H = Ho/m2 of the hypothetical point. Thus 
H will be the height of a point Q satisfying h(mQ) = Ho. 

Step d. Compute a number dmax with the property that if P = (a/d2, b/d3) E (Q) 
has height h(P) = H, then necessarily 1 < d < dmax. This estimate depends on an 
explicit bound for the difference between the canonical height and the naive height. 
See Proposition 4.2 below for details. 

Step e. Loop over the allowable d's. From Step (d), these d's must satisfy 1 < 
d < dmax, and since we are looking for S-integral points, they must be products of 
primes in S. 

Step f. See the justification for Steps (10)-(19) above. If E(Q) has a point P with 
x(P) = a/d2 and h(P) = Ho/M2, then the algorithm will find this point and 
terminate. 

Step g. This is the end of the loop over d, the allowable denominators. 

Step h. This is the end of the loop over the multipliers m. 

Step i. Compute a number dmax with the property that if P = (a/d2, b/d3) E (Q) 
has height h(P) < 0.1, then necessarily 1 < d < dnax and lal < d ax. As in Step (d) 
above, we refer the reader to Proposition 4.2 for details. [PARI: ordell (a/d2) will 
return the y-coordinates of any points P in E(Q) with x(P) = a/d2, and will return 
[E if there are no such points.] 

Step j. Perform an exhaustive or sieve-assisted search for all points P E E(Q) with 
x(P) = a/d2 satisfying 1 < d < dmax and lal < dmax. (In principle, it's only 
necessary to consider d's in Z n Z, but in practice, it doesn't take long to perform 
a complete search.) 
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Step k. If the algorithm has not discovered a point in E(Q), then one concludes 
that E(Zs) contains no non-torsion points. 

3. A MODIFIED ALGORITHM IF C6 < 0 AND lj ? 1 

In this section we briefly discuss a modified algorithm which can be used when 
the multiplicative period lql is very close to 1. This will occur when c6 is negative 
and the j-invariant of E is large. Note that the periods w1 and w2 computed in 
Step 7 give an isomorphism 

?: E(C) -* C/(wlZ + w27) 

defined over R. Our algorithm depends quite strongly on the fact that 0 is defined 
over JR, since we use the inclusions E(Q) C E(R) c E(C). 

As usual, let T = W2/W1 and q = e2-xi-. If lql is small, we consider the lattice 
-w22 + w17 with corresponding T1 =-1/T =-wl/w2 and q' = e2,iT . Then we 
have a commutative diagram of isomorphisms 

E(C) E' (C) 

CAWg1 2 + W2Z) >A(-W27 + W12) 

In this diagram, E'/Q is the C/JR twist of E, which means in particular that 
c4(E') = c4(E) and c6(E') -c6(E). The vertical maps are defined over JR, but 
the horizontal maps satisfy = -tb. 

The idea now is to perform Steps 11 and 15 working on the curve E' whose q' 
has small magnitude. We will explain how to do Step 11 when A > 0 (equivalently 
W2 E iJR), and leave the other similar cases for the reader. The correspondence 
between E and E' in this case is given by the formulas 

T =-1/T, q = e2ri'/ = e-21ri/T: zI = iz, u' e27riz//(-iW2) = e2riz/W2. 

Note that u' E JR and u' > 0, since w2 E iR. Similarly, q' > 0. We also observe that 

A,o (z; E) = A-o(Z; El) 

since normalized local heights are model independent. So, given a value H for 
the canonical height of a rational point, a choice of A E Abad, and a choice of 
denominator d, we solve the equation 

lql(1/2) B2(109U/log ql)1- u' * ]7(I - q'nu')(1 - q'nu'1) = exp(-H + logd + A) 
n>1 

numerically for u' E JR. By periodicity, we can restrict attention to u' satisfying 
(q')l/2 < u' < (q')-1/2. Having solved for u', we can recover z by the formula 
z = (w2/27ri) log u', and then continue with Step 12 of the algorithm. 

4. ERROR ESTIMATES AND FURTHER REMARKS 

In this section we will give two estimates which are needed to use the Canonical 
Height Search Algorithm in practice, and then we will make some remarks. 



848 JOSEPH H. SILVERMAN 

First, Step (3) of the algorithm says to compute L'(E, 1) using an explicit series, 
so we need to estimate the error in taking only a finite number of terms in this 
series. We will use the trivial estimate for the exponential integral, namely 

fc) dt I 0' dt I 
El (x)= d<1/ dt 1 Ei(x) ix 

te xJ et xex 

Further, we have the Hasse-Weil estimate 

lan| < d(n)v 

for the nth coefficient of L(E, s), where d(n) is the number of divisors of n. We will 
use the estimate 

(2) d(n) < nl/ loglog n 

which holds for virtually all n > 100. (To be more accurate, we should probably 
replace the exponent with 1.06602/ log log n, which will deal with n = 6983776800 = 
25 33 52.7 11-13*17*19. However, many a(n)'s will be a lot smaller than d(n)v/n_, 
so in practice we use (2).) Hence if we compute L'(E, 1) using m terms of the series, 
we can estimate the error by 

2 E E1 (2 ) < 2 S d(n) N-2nN 
n>m 

n 
n>m 

n 27rn 

N 1 1 
wr m3/2-l/ loglog m e27rm/N- 1 

Thus in order to compute L'(E, 1) accurate to within 10-k, one needs to take 
roughly keVN terms. This may be compared with the Heegner point method, 
which requires computing O(kN) terms of a slightly simpler series. We record our 
result as a proposition. 

Proposition 4.1. Let E/Q be a modular elliptic curve of conductor N whose func- 
tional equation has odd sign. Then for any m > 100, 

I(El 1) -2 , El (~ <) | 3/2-l/loglogm(e27rm/VN l) 

Next we consider the use of our height search algorithm to prove that a curve 
has no integral (or S-integral) points. In this case we do not continue until a 
point appears, so we need an a priori bound for the height of the x-coordinate 
of the hypothetical point. Since we know the equation of E and the canonical 
height h(P), we can use an estimate for the difference between h(P) and h(x(P)). 
The original estimates for this difference are due to Dem'janenko and Zimmer; we 
will use the author's estimate [17], and will only give the upper bound required for 
the height search algorithm. 

Proposition 4.2 ([17, Theorem 1.1]). Let E/Q be an elliptic curve given by a 
Weierstrass equation 

E:y2 + aixy + a3y = X3 + a2X2 + a4X + a6, 

with integral coefficients, let P E E(Q), and write x(P) = a/d2. Then 

logmax{ a ,d2} = h(x(P)) 

< 2h(P) + !h(j) + - log 1J1 + - log+ ljl + log+ Ib2/121 + 2.64, 12 6 6 
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where j is the j-invariant of E, A is the discriminant of the given Weierstrass 
equation, and b2 = al + 4 * a2. (If b2 = 0, then log 2 may be subtracted from the 
upper bound.) 

Remark 4.1. Suppose that A > 0, so E(R) is disconnected. If the bounded com- 
ponent of E(R) has a rational torsion point T, then there is no need to search 
for rational points on the bounded component. This is true because if P E E(Q) 
is on the bounded component, then P + T is on the unbounded component and 
h(P + T) = h(P), so the algorithm will find P + T. Of course, it's possible that P 
has a smaller denominator than P + T, in which case the algorithm would find P 
first. 

Remark 4.2. One may wish to compute w(E), the sign of the functional equation 
of E, without doing an L-series computation. The value of w(E) is given by a 
product of local signs, 

w (E) = w,,,, (E) rl wp (E), 
p 

and in many cases there are simple formulas for wp(E). For example, 

woo (E) =-1, 

wp(E) = 1 if E has good reduction, 

wp(E) -1 if E has split multiplicative reduction, 

wp(E) 1 if E has non-split multiplicative reduction. 

(See [2, p6].) Further, if E has multiplicative reduction, or equivalently if 

ordp(,A) =-ordp(j) > 0, 

then one can distinguish between split versus non-split reduction by computing the 
quadratic residue symbol [16, V ?5] 

wp(E) - -C4C6) 

Finally, if E has additive reduction at p > 5, we mention that Rohrlich [12, Propo- 
sition 2] has given a simple algorithm to compute wp(E). 

Remark 4.3. In certain cases the Canonical Height Search Algorithm can be used 
for curves of rank 2. More precisely, suppose that E(Q) has rank 2. Using the 
value of L"(E/Q, 1) and the conjecture of Birch and Swinnerton-Dyer, we compute 
a value for R(E/Q)#1ll(E/Q), where R(E/Q) is the height regulator [15, VIII ?9]. 
Suppose for the sake of discussion that IHI(E/Q) = 1. This means that we can find 
the value of 

R(E/?Q) = det t(Pl P0 (Pl: P), 
(PlAP2) A P2) 

where 2(P, Q) = h(P+Q) -h(P) -h(Q). Suppose further that by a (sieve assisted) 
brute-force search we have found one point P1 E E(Q). This is not an unreasonable 
situation, since there are elliptic curves of rank 2 with one small generator and one 
large generator. To cite just one example shown to me by John Cremona, the curve 

y2 = X3-673 
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has rank 2 with smallest generators 

( 33989323537 1384230292401340 
Pi= (29, -154) and P2 - K 3814421121 ' 235582462854081 ) 

Here is how to adapt our algorithm to help in finding P2. We loop over denom- 
inators d and d', where d is a possible x-denominator for P2 and d' is a possible 
denominator for Pi + P2 or Pi - P2. (Note that one of Pi ? P2 will have canonical 
height less than h(Pi)+h(P2).) We also loop over A, A' E Abad, where A is a possible 
value for Abad(P2) and A' is a possible value for Abad(P1 + P2). Since we already 
know the point PF, we can compute the corresponding value z1 E C/L. This leads 
to the following equation for the regulator, where z E C/L is the still unknown 
value corresponding to P2: 

h(P1) (4~~~~(zi ? z) ? log d' ? A' A 
R (_ 1 t PlO (-+(Pi) - A,, (z) - log d - A 

A,,(z)-logd-A 

(This is the formula to test whether d' is an x-denominator for Pi + P2. There is a 
similar formula to test whether d' is an x-denominator for Pi - P2. Both formulas 
should be checked, since one of P1 ? P2 may have a much smaller denominator than 
the other.) Since we are assuming that the value of R is known from the L-series 
computation, and since the desired value of z actually lies in IR/E or IR/Z + ? T, we 
can use numerical methods to solve the equation for z. This gives a hypothetical 
real approximation P(z) for x(P2), and we conclude by checking if d2P(z) is close 
to an integer a satisfying a/d2 E x(E(Q)). 

How efficient is the method just described? Suppose that x(P2) actually equals 
a2/d2, where Ja2l and d2 are each approximately equal to the multiplicative height 
D -H(P2). The "brute-force" method requires a loop a < 1a2 and d < d2, so has 
running time O(D3/2), and the algorithm for rank 1 described above has running 
time 0(D1/2). In the rank 2 case, we need to loop over possible denominators 
d, d' < d2, so the running time will be O(D). This is still better than the brute-force 
method, but in practical terms it may not actually be faster than a sieve-assisted 
search. 

Remark 4.4. The method of homogeneous spaces provides a powerfuL tool for 
searching for rational points on elliptic curves. Assuming that E has no ratio- 
nal torsion, it is generally only feasible to use homogeneous spaces of degree 4, 
as described in [6, p3.6]. The search for the homogeneous space(s) has expected 
runtime O(A1/j2). Assuming that a (locally trivial) homogeneous space C is found, 
one then does an exhaustive (possibly sieve assisted) search for points in C(Q). 
The expected running time is O(D1/2), so about the same as the Canonical Height 
Search Algorithm. In practice, it is not clear a priori which will be faster for any 
given elliptic curve. 

However, in principle it is possible to combine the two methods. Thus one uses 
the known value of h(P) to eliminate one of the loops in the exhaustive search 
on C, yielding a running time of O(D1/4). Unfortunately, the method does not 
seem to be practical at this point, because of the need to check a large number of 
possible common divisors of certain numbers. For this reason we have not included 
the lengthy details of the combined height-homogeneous space method. 
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5. NUMERICAL EXAMPLES 

In this section we give four numerical examples. The first two are from Cremona's 
list [6] of curves of conductor up to 104. At the time this paper was originally 
written, these two curves were expected to have rank 1, but a sieve-assisted search 
up to h(x) < 7.5 had failed to find any points. Since the writing of this paper, 
Cremona has improved both the sieve-assist6d search and the homogeneous space 
method so that they are able to deal with these two examples. Further, Zagier has 
explained that since the conductors are comparatively small, the Heegner Point 
method will also find rational points quite rapidly. However, we will describe these 
two examples in some detail so as to illustrate how the Canonical Height Search 
Algorithm is used as a straight search algorithm. 

Our third example is a curve E of large conductor N 107 which has a generator 
of large height H 16. This example is certainly at (if not beyond) the limits of 
feasible computability using any of the other search algorithms, but we will be able 
to verify quite rapidly that E(z) = 0, and after a fairly lengthy search (36 hours), 
we will be able to find a generator for E(Q). Our final example is a curve E of 
conductor greater than 108. In this case we will not hunt for a generator for E(Q), 
but will be content to prove that E(Z[1/2]) = 0. 

Example 1. For this first example we will give a detailed description of each step 
of the Canonical Height Search Algorithm. Hopefully this will be useful for test- 
ing should the reader decide to implement the algorithm. To save space, we will 
generally only write the first few significant digits of real numbers. However, the 
actual calculations for this example were all performed with 28 digits of accuracy. 
For larger examples, it might be worthwhile to work with 50 or 100 digits. 

We will consider the elliptic curve 

E: y2 + xy = x3-X2 - 12396x- 1140144. 

First we compute the associated quantitites: 

b2 =-3, b4= -24792, b6 = -4560576, b8 -150240384, 

C4 595017, C6 987761979, A = -442714581230976, 

j = -7802330770032219/16396836341888. 

The discriminant factors as A = -27 33 .716. (This shows, in particular, that the 
given Weierstrass equation is minimal.) Using Tate's algorithm and Ogg's formula, 
we compute the reduction types, local Tamagawa numbers, and the exponent of 
the conductor for each prime of bad reduction: 

p= 2 Type I7 C2 = 1 f2 = I 

p = 3 Type II C3 = 1 f3= 3 
p=71 TypeI6 C71=6 f711. 

So the conductor of E is 

N = 2f2 3 3 71f7l = 3834, 

and the (global) Tamagawa number is c =C2C3C71= 6. Further, a search for torsion 
points yields 

E(Q)tors = {O, (217, -2629), (217, 2412)}, 

so T = #E(?Q)tors= 3. 
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At this point we will also compute the periods of E. The lattice of E is generated 
by the two periods 

w1 0.21217 and w2 0.10608 + 0.23494i. 

Associated to these are the quantities 

'T = 
W21W1 0.5 + 1.10736i and q = e - 0.00095121. 

The fact that lql is small means that the height series will converge rapidly, which 
is good. Further, we note that since A < 0, the real locus has only one component 
and the real period Q is given by 

Q (Ik)dx/(2y + aix + a3) =w 0.21217. 
E(R) 

Next we consider the computation of the L-series via the sum 

LrZ (27r) 

Proposition 4.1 tells us that if we take m = 650, the finite sum will differ from 
L'(E, 1) by less than 10-30. In order to compute the first 650 coefficients of the 
L-series of E, we start by computing the ap's with p prime via the formula 

ap = p + 1-#E(Fp). 

For such small primes, one can compute the ap's by the brute force formula 

S 4x3 + b2x2 + 2b4x+ b6) ap = E I 
o?x<p 

although in general for larger primes one should use a more efficient method for 
computing #E(Fp), such as Shanks' baby step-giant step method. In any case, the 
ap's for our curve are 

a, = 1, a2 =-1, a3 = 0, a5 =-3, a7 =-I, all = 3, 
a13 = 2, a17 0, ... a613 44, a617 =18, a619 =-10, 

a631 = -37, a641 --6, a643= 14, a647= 36. 

Using these and the standard recursions 

amn= aman for gcd(m, n) = 1, apk = apapk-1 -papk-2 for k > 2, 

we compute all an's for n < 650. 
Now that we know the an's, we can compute the value of the L-series 

650 a 2r 
LI/(El,1) 5ah (n 2El 

n=l n v(3834 / 
2.164605251532673588502104879 

Using this, we obtain the canonical height of the sought-for rational point on E: 

_L'(E, 1)T 2 
H - L7.651655428781607647931654194. 

So far we have done nothing new; such computations have been performed by 
many people. Now we begin the heart of our algorithm. We need to compile a 
list of possible contributions to the height H coming from the three primes of bad 



COMPUTING RATIONAL POINTS ON ELLIPTIC CURVES 853 

reduction. The curve E has Type 17 reduction at p = 2, so looking at Table 1 we 
see that the possible contributions are 

\(7 i 2_ 
Abad(2) 12 - + 14) log2 0 <i< 7} 

{0.40434, 0.10727, -0.09077, -0.18979}. 

The reduction at p = 3 is Type II, so Abad(3) = {(3/12) log3} {0 27465} has 
only one element. Finally, E has Type 16 reduction at p= 71, so 

Abad(71) {(2 + 2) log71 : 0 < i < } 

{2.14523,0.35754, -0.71508, -1.07261}. 

Now we take all possible sums using one element from Abad(2), one element from 
Abad(3), and one element from Abad(71), to form our list Abad of possible bad prime 
contributions to the height. For our curve E, the set Abad will have 16 elements, 

Abad {2.81033, 1.03421, -0.03146, -0.38668, 2.51327, 

0.73715, -0.32852, -0.68374, 2.31522,0.53911, -0.52656, 

- 0.88179,2.21620,0.44009, -0.62558, -0.98081}. 

We are now ready for the main loops. We start with d = 1 and take the first 
element A 2.81033 E Abad. We need to solve 

S II ((1 - q n)2 + q` S2) lql-1/12 exp(A + log d - H) 0.014101. 
n>1 

Using Newton's method, we find that S 0.0140742 and z (1/i7r) sin-1(S/2) 
0.00224. Now the modified Weierstrass p function gives 2(z) 4427271.46956. We 
next compute a potential numerator for x(P), 

a =Ld2p(z)1 = 4427271. 

The fact that d2p(z) is not close to an integer virtually ensures that this is not the 
correct a/d2. In any case, we can check to see if the quantity 

4a3 + b2a2d2 + 2b4ad4 + b6d6 = 347110888577755405881 

is a perfect square. Alas, it is not, so we continue on to the next element of A1,ad 

and repeat the process. After 16 iterations, we have exhausted all of the elements 
of Abad and we still have no point in E(Q). This shows that the point we are 
searching for is not an integer point (i.e., does not have d = 1), so we increment to 
d = 2 and begin again. 

Eventually the value of d will equal d = 354, and looping through the elements 
of Abad we come to the value A 1.03421. Solving as above, we find that 

S 0.844039, z 0.138678, 2(z) 1157.598159851894410929171077. 

Then d2p(z) is an integer to within 20 decimal places, definitely a good sign, and 
we set 

a Ld22(z)1 145065571. 
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Now 

4a3 + b2a2d2 + 2b4ad4 + b6d6 = 12081205978054421909840896 

= 34758029256642 

is a perfect square, so we have found the rational point 

( 145065571 1712224856765) E(Q) 

This example was computed on a Power Macintosh 7100/80 using PARI 1.39 
(with no great effort to streamline the computations). It took approximately 1 sec- 
ond to check each potential denominator d, and thus approximately 6 minutes to 
find the point. As mentioned earlier, Zagier has observed that the Heegner Point 
Algorithm provides an even quicker way to solve this example. 

Example 2. We only briefly give the details for our second example, the curve 

E: y2 + xy = X3-X2 - 34911x - 2501928 

of conductor N = 3879. Using 1000 terms of the L-series gives 

L'(E, 1) 5.034164639731370882701288647, 

and using this and the fact that #E((Q)tors= 4, we compute 

H 14.41346735625563972827987389. 

Further, 

q 0.00000002097967707074283079352765088 and #Abad= 6, 

so each denominator d can be checked fairly rapidly. After a number of hours, we 
find that d = 125714 yields the point 

8218827853779 22261338488996940783 E E (Q) 
( 1257142 1257143 () 

Zagier [21] has used PARI to recompute Example 2 via Heegner points in 10 to 
15 seconds. So for our next two examples we choose curves having conductors which 
are at or beyond the range at which Heegner point computations are practical. 

Example 3. For our third example, we will consider the curve 

E: y2 +xy+y = X-x2 - 21x-152, 

which has conductor N = 10069019. We will first prove that E(z) is empty, a 
calculation which takes only a few minutes. We will then proceed to do a complete 
search, which takes considerably longer, but does eventually produce a generator. 

The curve E has discriminant and j-invariant 

979146657 
A -10069019 and j - 10069019 -97.2435. 

We begin by computing the L-series using 46000 terms of the series and 50 digits 
of precision: 

L'(E, 1) =31.047460928677357675133339778016130653212869682533. 
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(This took PARI a little less than 6 minutes on an 80MHz Power Macintosh.) 
According to Proposition 4.1, this value is accurate to at least 42 decimal places. 
Next we compute the torsion subgroup, Tamagawa number, and real period, 

T = 1, c = 1, Q = 0.97249. ... 

and using these we find the canonical height 

H =15.962820584929157630512545697200916399133798839124. 

Finally, we compute the multiplicative period 

q = -0.0018219151314974123101127422317525825667588087666281 

and observe that q is sufficiently small to permit the algorithm to operate quite effi- 
ciently. Further, there is only one bad prime, namely N, and since the discriminant 
A =-N is also prime, the set Abad consists of the single value 

Abad = { 'log N} = {1.343747820156317559.. . 

We are now ready to illustrate how the Canonical Height Search Algorithm can 
be used to verify that E(z) = 0. The first step is to apply the algorithm with 
denominator d = 1 and height H. This yields no points, which shows that E(z) 
contains no points with canonical height H. Continuing, we apply the algorithm 
with denominator d = 1 and heights H/4, H/9, ... , H/132, and still find no 
(integral) points. (Computation time is very small, on the order of 4 seconds to 
check all 13 height values.) This proves that if E(z) is non-empty, then it must 
contain a point Q of canonical height less than H/142. Proposition 4.2 then tells 
us that such a point Q will satisfy 

log Ix(Q)I < 9.521, so x(Q)I < 13640. 

This bound is sufficiently small that it is a simple matter to perform an exhaustive 
search and verify (in approximately 2.8 seconds) that there are no such points. So 
we have proven that E(z) is empty. 

The most time-consuming part of the computation was the evaluation of L'(E, 1). 
Having computed L'(E, 1) (and thus H) once, we see that for any particular d, 
it takes us less than 7 seconds to show that E(Q) has no points of the form 
(a/d2, b/d3). Using Proposition 4.2, we know that there is a point in P E E(Q) 
with canonical height H whose denominator satisfies 

(3) d < e20 648 9.22. 108 

Clearly we cannot check all d's up to this bound, but there is nothing to stop us 
from trying small d's, say d < 106, and hoping that the denominator of x(P) is 
smaller than 1012. Indeed, although it takes around 36 hours, the Canonical Height 
Search Algorithm eventually discovers the point 

p ( 72574710196444 600637381549819353188 E (Q) 
4639952 4639953 

Computing h(P) directly, we find that our hypothetical height H differs from h(P) 
by less than 10-43, just as expected. We also find that the Canonical Height Search 
Algorithm is able to identify P using only 23 digits of H, so the computation would 
have been faster if we'd worked with 28 digits of accuracy. 

We should also check that P is actually a generator of E(Q). To do this, we 
use the analytic parametrization E(C) _ C/L to compute analytically the points 
(1/m)P for m = 2,3,5,... ,23 and to check if any of them have rational coordinates. 
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This takes under a minute using the PARI functions zell and pointell. (Note we 
only need to check prime values of m.) Finally, we suppose that P = mQ for some 
m > 29. In this case h(Q) < h(P)/292, so Proposition 4.2 tells us that x(Q) = a/d2 
with 

lal < 12038 and '1 < d < 109. 

It takes under 5 minutes to check by brute force that such a Q does not exist. This 
completes the verification that E(Q) = ZP. 

Total computation time to prove that E(z) 0 was 6 minutes, and the time 
to find a generator for E(Q) was approximately 36 hours. (The latter figure could 
certainly be considerably reduced if more care were taken in programming the 
algorithm.) 

For comparison purposes, we expect that the Heegner Point Algorithm would 
take far longer, although we do not say that it is impossible to use the Heegner Point 
Algorithm for this problem. The difficulty in using Heegner points here is that in 
order to compute the Heegner point analytically, one must sum a series E anqn /n 
with I ql e-27r/N, where the an's are the usual coefficients of L(E/Q, s). So to get 
(say) 28 digits of accuracy requires (at least) 5 . 107 terms. However, PARI takes 
around 0.22 seconds to compute each an when n gets around 107, so even a rough 
estimate suggests that it would take hundreds of hours to find P via Heegner points. 
Finally, we mention that sieve-assisted and homogeneous space searchs (even for 
integral points) are unlikely to be feasible on a curve with such a large conductor 
and generating point. 

Example 4. For our final example we will look at the curve 

y2 +xy+y=x3 _x2 + 174x+256 

of conductor and discriminant 

N = 377812871 and A =-377812871. 

It took 64 minutes to compute 250000 terms of the series for L'(E, 1), yielding 

L'(E, 1) = 30.03146162954767138480670957295473260515, 

and Proposition 4.1 says that this is accurate to at least 37 decimal places. From 
this, it is an easy matter to compute 

H = 14.21034299783875777356455736075754044495. 

We can now use the Canonical Height Search Algorithm to search for points. 
Applying it with d = 1 and height H gives no point, so we conclude that E(z) 
contains no points of height H. Similarly applying the algorithm with d = 1 
and H/mr2 for m = 2,3,... ,25, we find (in 15 seconds) that there are no points 
in E(z) with height greater than H/625. Next, Proposition 4.2 tells us that any 
integer point Q E E(z) with h(Q) < H/625 will satisfy 

lx(Q)l < 54926. 

It takes 11 seconds to verify by a brute-force search that there are no such points, 
which completes the proof that E(z) = 0. 

We will conclude by explaining how the Canonical Height Search Algorithm 
can be used to prove that E(7[1/2]) = 0. Suppose first that there is a point 
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P = (a/dc2, b/ld3) E E(Z[1/2]) with h(P) = H. Proposition 4.2 tells us that 

1 < d < 340008469, 

so we see that dc 2e for some 0 < e < 28. Applying the Canonical Height Search 
Algorithm with height H and denominator d = 1,2,4,8... ,2 28 takes 18 seconds 
and yields no points. Next we look for P E, E(Z[1/2]) satisfying h(P) = H/4. 
Such a P has denominator d < 7996, so we only need check d = 2e for 1 < 
e < 12. Again we get no points (in 8 seconds). Continuing, we take H/9 with 
1 < e < 10 (7 seconds), H/16 with 1 < e < 9 (6 seconds), ... , H/225 with 
1 < e < 7 (5 seconds). Total time expended is a scant 100 seconds, and we now 
know that E(Z[1/2]) contains no points with height greater than H/225. On the 
other hand, if h(P) < H/225, then Proposition 4.2 says that 

lal < 59551 and d=2e with O<e<7. 

It takes about 7.5 minutes to check by brute force that E(Q) contains no such 
points, which completes the verification that E(7[1/2]) 0. 

ADDED IN PROOF 

John Cremona has informed me that his mwrank program is now able to solve 
Example 3 in just a few seconds using homogeneous spaces. 
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